Seminarios de Negocios 2020
El propósito del seminario es convertirse en el lugar donde presentar nuevas investigaciones, así como también, en un foro para aumentar el conocimiento mutuo entre los miembros del profesorado.
Tel.: 5169 7301
Jueves 26 de noviembre
Gustavo Vulcano | UTDT
"Deducción de conjuntos de consideración para modelos de demanda a partir de datos de ventas."
Abstract
Understanding consumer preferences is critical when optimizing prices and assortments in retail operations, and when matching supply and demand in online platforms. In pursuing such an objective, a key input is the set of products that are both available and considered, from which a customer makes a choice. We propose a methodology to identify consideration sets, defined as those that are considered and available, from sales transactions data in a data driven way. We assume that customers are boundedly rational and make purchases in a two-stage process: first, they sample their consideration set and then purchase the most preferred item therein. Theoretically, we address the problem of identifiability of consider-then-choose models from data –we propose a framework to effectively estimate them and infer consideration sets. Then we apply the proposed framework on synthetic data and two real datasets. We observe that accounting for consideration sets can significantly boost the predictive performance in comparison with classical choice-based demand benchmarks, particularly in cases when the assortment of available products is not clearly defined. We show that the consider-then-choose type of choice models can provide important managerial insights about the consideration set formation.
Bio
El Dr. Gustavo Vulcano es profesor plenario de Operaciones en la Escuela de Negocios de la Universidad Torcuato Di Tella (UTDT), e investigador independiente del CONICET. Es también director del Master in Management (MiM) + Analytics en UTDT. Licenciado en Ciencias de la Computación (UBA) y Doctor en Decision, Risk and Operations (Graduate School of Business, Columbia University), también se desempeñó como profesor full-time en la Leonard N. Stern School of Business, New York University, donde consiguió su promoción a Associate Professor with tenure.
Su investigación incluye tópicos de revenue y pricing analytics, retail operations, y supply chain management. Sus papers han sido publicados en los más destacados journals internacionales de estas disciplinas, incluyendo Operations Research, Management Science y Manufacturing and Service Operations Management. Actualmente se desempeña como associate editor de Management Science y como coeditor del área de Revenue Management & Market Analytics de Operations Research.
Jueves 12 de noviembre
Elisa Belfiori | UTDT
"Política climática sin un impuesto al carbono: ¿qué alternativas hay?."
Abstract
Is there an optimal alternative to a global carbon tax? We study this question in a standard neoclassical growth model with a carbon emissions externality using both the Pigouvian and Ramsey motives for taxation. We show that the social optimum is implementable with taxes widely used in countries worldwide – such as consumption, energy, income taxes – and no carbon taxation. We theoretically characterize and quantitatively estimate the optimal tax rates, and we find that they are well within existing tax rates. We argue that traditional taxes can play a central role in tackling the climate problem as policymakers seem reluctant to introduce a carbon tax and are often keener on changing existing tax rates.
Bio
Elisa Belfiori es economista especializada en macroeconomía, cambio climático y diseño de políticas públicas. Recibió su Ph.D. en la Universidad de Minnesota. Es profesora de la Escuela de Negocios y directora de la Licenciatura en Economía Empresarial y la Licenciatura en Administración de Empresas UTDT. Sus áreas de investigación abarcan el diseño óptimo de políticas, impuestos a las emisiones de carbono, los problemas de equidad intergeneracional asociados al cambio climático, y el diseño de políticas para la promoción de energías renovables, captura y almacenamiento de carbono, y gestión de residuos. Sus trabajos han sido publicados en Energy Policy, The European Economic Review y MIT Press, entre otros.
Jueves 29 de octubre
Hunt Allcott | Microsoft Research & Harvard University
"Digital Addiction."
Abstract
Digital technologies such as smartphones and social media consume a large and growing share of leisure time. While these technologies provide obvious benefits, it is often argued that they can be addictive and harmful. We lay out a model of digital addiction and estimate its parameters using a randomized experiment involving about 2000 smartphone users. We also measure treatment effects of reduced smartphone use on survey measures of smartphone addiction and subjective well-being.
Bio
Hunt Allcott is an applied microeconomist who studies topics in behavioral economics, environmental economics, public economics, and industrial organization. He is a Senior Principal Researcher at Microsoft Research, a Visiting Associate Professor of Economics at Harvard University, a Research Associate at the National Bureau of Economic Research, and a Co-Editor of the Journal of Public Economics. He is a Scientific Director of ideas42, an Affiliate of Poverty Action Lab, and a Faculty Affiliate of E2e. He was a Contributing Author on the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Professor Allcott holds a PhD from Harvard University and a BS and MS from Stanford University.
Jueves 8 de octubre
Fernando Chague | São Paulo School of Economics, FGV Brasil
"Attention and Biases: Evidence from Tax-Inattentive Investors."
Abstract
We first provide evidence of investor inattention to a very simple and well-known capital-gains tax exemption in the Brazilian stock market. We then show that tax-inattentive investors exhibit stronger behavioral biases and worse trading performance, even after controlling for several investor-level characteristics. The evidence is consistent with inattention being a common source of behavioral biases.
Bio
Fernando Chague is an assistant professor of Economics at the São Paulo School of Economics, FGV, Brazil. His research interests are in financial economics and empirical finance, with a current focus on behavioral finance and limits to arbitrage, specifically those that arise from short-selling constraints. He holds a Ph.D. in Economics from the University of North Carolina at Chapel Hill, where he graduated in 2012.
Jueves 15 de octubre
Lucía Macchia | Harvard Kennedy School
"Educational opportunities, social mobility, and the happiness of the rich around the world."
Abstract
Does the well-being of the rich vary when resources that promote upward social mobility are widely available? Using a nationally representative survey with 500,000 respondents from 109 countries, this paper shows that the well-being people gain from a higher income rank declines when there are greater educational opportunities in their country. This negative effect is larger for those who believe that upward social mobility through hard work is possible. Strikingly, a higher income rank, greater educational opportunities, and the belief that upward social mobility through hard work is possible are associated with negative emotional experiences, such as stress and worry whereas positive emotional experiences are unaffected. These findings have important practical implications for all sorts of hierarchical contexts, from societies to organizations.
Bio
Lucía Macchia is a Postdoctoral Research Fellow at the Women and Public Policy Program at the Harvard Kennedy School. Behavioural scientist with an interdisciplinary background and an interest in happiness, prosocial behaviour, inequality, and policy. Her work integrates methods from psychology and behavioural economics and focuses on two questions: 1) how macroeconomic factors shape people’s wellbeing, and 2) how inequalities influence people’s wellbeing and behaviour. To study these topics, Lucía uses large-scale datasets and experiments as well as a wide variety of statistical methods.
Jueves 1 de octubre
Sebastián Cortés Mejía | Ph. D. Candidate Iowa State University
"Getting Caught and Saving Face:Investors’ Responses to Executives’ Negative Non-Work Behaviors."
Abstract
Behaviors that happen outside top managers’ role and the organization (i.e. non-work behavior) are every time more salient on the media and are having an impact on the organization. Nevertheless, this phenomenon is underexplored, little theoretical development has been advanced, and nascent empirical findings present mixed results. Sebastian uses signaling theory to suggest that top managers, as reliable signalers of the organization, convey messages with their negative non-work behavior (non-traditional signal) about the quality and intent of the management of the firm that investors receive and use to make decisions. Furthermore, he uses managerial and organizational reputation (traditional signals) as moderators that partially explain variations on the reaction of the investors. Using a sample of 137 CEOs and TMT members from publicly traded companies in United States, he finds support for his hypotheses. He discusses important implications for research on signaling theory and strategic leadership.
Bio
Sebastián Cortés Mejía is currently a fifth year Ph.D. candidate in the department of management and entrepreneurship in the Ivy College of Business at Iowa State University. Sebastian obtained his Bachelors in Industrial Engineering and International Business Administration from University of La Sabana in Colombia. Recently he published a paper in the Journal of Organizational Behavior and one of his conference presentation papers was nominated for the best article in social issues in management in AOM 2020 entitling to publish a short version of the paper in the Academy of Management Proceedings.
Jueves 10 de septiembre
Ramiro Galvez | Doctorando Cs. de la Computación, UBA
"A Unifying Framework For Modeling Acoustic/Prosodic Entrainment: Definition and Evaluation On Two Large Corpora."
Abstract
Understanding consumer preferences is critical when optimizing prices and assortments in retail operations, and when matching supply and demand in online platforms. In pursuing such an objective, a key input is the set of products that are both available and considered, from which a customer makes a choice. We propose a methodology to identify consideration sets, defined as those that are considered and available, from sales transactions data in a data driven way. We assume that customers are boundedly rational and make purchases in a two-stage process: first, they sample their consideration set and then purchase the most preferred item therein. Theoretically, we address the problem of identifiability of consider-then-choose models from data –we propose a framework to effectively estimate them and infer consideration sets. Then we apply the proposed framework on synthetic data and two real datasets. We observe that accounting for consideration sets can significantly boost the predictive performance in comparison with classical choice-based demand benchmarks, particularly in cases when the assortment of available products is not clearly defined. We show that the consider-then-choose type of choice models can provide important managerial insights about the consideration set formation.
Bio
Doctorando en Ciencias de la Computación, FCEyN, UBA. Magíster en Data Mining, FCEyN, UBA. Magíster en Desarrollo Económico, Universidad Carlos III de Madrid. Licenciado en Economía, UNC. Sus intereses de investigación se centran en estudiar cómo técnicas provenientes del campo del aprendizaje automático y del campo del procesamiento del lenguaje natural (estas últimas aplicadas tanto a texto como a habla) pueden ser utilizadas a los fines de estudiar fenómenos sociales, comportamentales y económicos complejos. Su trabajo ha sido publicado en congresos y revistas científicas internacionales de alto impacto: Journal of Economic Behavior & Organization, Speech Communications, Journal of Informetrics, Economic Inquiry, SigDial, Scientometrics, Interspeech, entre otras.
Jueves 3 de septiembre
Mark Conley | PhD in Psychology, Columbia University
"Rose-Colored Glasses: Availability and Overoptimism in New Venture Formation."
Abstract
Millions of startups are competing right now for funding, customers, and market share, but an extremely small percentage of these new ventures will survive. Given the extremely low odds of success, it is perplexing that the entrepreneurs who found new firms enter the market en masse. Do these founders overoptimistically believe they can beat the odds? Or instead are they influenced by mass media portrayals of a promising market? Despite its rarity, venture capital raising has captured the media’s attention rather than the far more common occurrence of venture death. Drawing upon the entrepreneurial cognition literature regarding heuristics and biases, we theorize that frequent media mentions make information about fundraising more “available” to prospective entrepreneurs, increasing their motivation to start a venture by causing them to overestimate the magnitude of funding they will be able to raise. We find support for both personal (dispositional optimism) and situational (media influence) factors that drive market entry through a mixed methods approach including a ten-year archival study and a randomized experiment (N = 317). Implications for both theory and practice are considered.
Bio
Mark Conley earned his PhD in Psychology from Columbia University in the Motivation Science Lab. His work across contexts demonstrates how motivational language impacts key outcomes for organizations and individuals. To measure states of goal pursuit and goal orientations, He builds linguistic measurement tools that measure motivations in conversations, correspondence, webpages, static documents, and other archives. To study interesting and important phenomena in entrepreneurship and management, he first measures psychological and motivational variables via an observational study or archival reference. Then he proceeds onto pre-registered experiments and replications to pin down causality and identify potential mediators. His work has been published in Organizational Behavior and Human Decision Processes, Basic and Applied Social Psychology, Social Science Research, Academy of Management Journal, and Harvard Business Review.
Miércoles 15 de julio
Ernesto Schargrodsky | UTDT
"Dishonesty and Public Employment."Abstract
We study the link between dishonesty and selection into public employment. When military conscription was mandatory in Argentina, eligibility was determined by a lottery and by a medical examination. In order to avoid conscription, drafted individuals had strong incentives to cheat in their medical examination. These incentives varied with the lottery number. Exploiting this exogenous variation in the propensity to engage in dishonest behavior during early adulthood (the “impressionable” years), we find that individuals with higher probability of having cheated in their health checks as young adults also show higher propensity to become public employees later in life.
Authors: Guillermo Cruces, Martín A. Rossi y Ernesto Schargrodsky.
Bio
Ernesto Schargrodsky es doctor en Economía por la Universidad de Harvard. Profesor plenario de la Escuela de Negocios y director del Centro de Investigación en Finanzas (CIF) de la Di Tella. Fue rector de la Universidad entre 2011 y 2019. Previamente, se desempeñó como decano de la Escuela de Negocios. Ha sido profesor visitante en Stanford e investigador visitante en Harvard, y es investigador independiente del CONICET. Entre otros temas, sus estudios analizan el efecto del otorgamiento de títulos de propiedad de la tierra en áreas marginales, el impacto de la presencia policial sobre el crimen, el efecto de la utilización de sistemas de monitoreo electrónico de detenidos sobre la reincidencia criminal, el efecto de la privatización de las empresas de agua sobre la mortalidad infantil, el análisis del apoyo a las privatizaciones en la opinión pública, el impacto del servicio militar obligatorio sobre el delito y la relación entre salarios de los funcionarios públicos y corrupción. Sus trabajos han sido publicados en American Economic Review, Journal of Political Economy, Quarterly Journal of Economics, American Economic Journal: Applied Economics, Journal of Law and Economics, Journal of Public Economics, Journal of Economic Behavior and Organization y Journal of Development Economics, entre otros.
Jueves 2 de julio
Karen J. Ye | UChicago | UCEMA Joint Initiative for Latin American Experimental Economics (JILAEE)
"Understanding Peer Effects in Educational Decisions: Evidence from Theory and a Field Experiment."
Abstract
While a large literature documents the presence of peer effects in teenage decision-making, researchers know very little about the underlying mechanisms. In this paper, I focus on the decision by high school students to participate in an educational program. I develop a theoretical model with two channels of peer effects: social learning (where a peer’s decision is informative about the value of a program) and social utility (where a peer’s participation directly changes the benefits or costs of a program). I conduct a field experiment in Chicago. In the experiment, I measure students’ sign-up rates for a college application assistance program where I randomize (a) whether a student sees a peer’s decision, and (b) which type of peer’s decision they see. I find that seeing a peer choose “No” decreases the sign-up rate by 26.9 percentage points. The peer effects are driven by social utility, and seeing a peer choose “No” informs students about the social norms of participation. In this context, smart students’ decisions are especially influential. Further, while students want to conform to the social norm, they have very biased beliefs about their peers’ participation. I estimate my model and combine the structural estimates with collected school social network data to run a policy counterfactual. I find that when there are negative peer effects and costly initial adoption, programs targeting smart students may have decreased sign-up rates compared to programs targeting highest need students.
Bio
Karen J. Ye is a behavioral and experimental economist with an interest in education. In particular, she conducts experiments with schools, companies, and government organizations to study how individuals make decisions, focusing on social incentives, emotions, and beliefs. Postdoctoral Scholar/Assistant Director at the UChicago | UCEMA Joint Initiative for Latin American Experimental Economics (JILAEE). Assistant professor in the Department of Economics at Queen’s University. She holds a Ph.D. and B.A. in Economics from the University of Chicago.
Jueves 11 de junio
Agustín Gravano | UTDT
"Modelando la coordinación de diálogos."Abstract
Para lograr que un sistema de diálogo hablado (p.ej. Apple Siri, Google Assistant, Amazon Alexa, HAL 9000, C3P0, Bender, etc.) suene “natural”, debemos ser capaces de modelar la notable complejidad de las conversaciones entre humanos. Por ejemplo, debemos comprender los protocolos que rigen como ceder o tomar la palabra, así como las sutiles formas en que cambiamos nuestra forma de hablar dependiendo de quién es nuestro interlocutor, del tópico, de nuestro estado de ánimo, de nuestras intenciones y de tantos otros factores. En esta charla presento brevemente los fundamentos de la rama de la inteligencia artificial conocida como procesamiento del habla, y luego describo los proyectos de investigación que buscan avanzar en estos problemas.
Bio
Agustín Gravano, director de la nueva Licenciatura en Tecnología Digital de la UTDT, es profesor e investigador en Ciencias de la Computación, especializado en Inteligencia Artificial. Su trabajo de investigación se centra en entender y modelar la extraordinaria coordinación que exhiben los seres humanos en las conversaciones orales, empleando técnicas de aprendizaje automático y estadística aplicada. Ese conocimiento se usa luego para mejorar la naturalidad de los sistemas de diálogo hablado. Antes de sumarse a la UTDT, Agustín fue profesor de tiempo completo en la Universidad de Buenos Aires (2011-2020). Completó su Doctorado en Ciencias de la Computación en Columbia University en 2009, y su Licenciatura también en Ciencias de la Computación en la UBA en 2001, durante la cual trabajó un tiempo en Teoría de Grafos antes de pasarse a la Inteligencia Artificial.
Miércoles 20 de mayo
Fabiana Penas | UTDT
"Incertidumbre política y asignación geográfica del crédito: evidencia de las pequeñas empresas."
Abstract
Investigamos cómo la incertidumbre política afecta la distribución geográfica de los préstamos bancarios a las pequeñas empresas y sus consecuencias en la economía real. Utilizando variación exógena en las elecciones de gobernador de Estados Unidos sin posibilidad de reelección, mostramos que la incertidumbre política hace que los bancos locales aumenten los préstamos a pequeñas empresas en los otros Estados donde operan y donde no hay incertidumbre política. El aumento en la disponibilidad de crédito a su vez conduce a un aumento del crecimiento neto del empleo y la creación neta de empresas en esos Estados, especialmente en sectores que tienen necesidad de alto start-up capital. Nuestros resultados indican que la diversificación geográfica y la integración financiera permiten a los bancos evitar los efectos económicos locales negativos de la incertidumbre política.
María Fabiana Penas es profesora asociada de Finanzas en la Universidad Torcuato Di Tella, y extramural fellow en TILEC (Tilburg Law and Economics Center). Sus temas de investigación incluyen las finanzas de las pequeñas empresas, la intermediación financiera y las finanzas corporativas. Ha publicado sus trabajos de investigación en el Journal of Financial Economics, Review of Financial Studies, Management Science, Journal of Law and Economics, Journal of Financial Intermediation, y Review of Finance, entre otros. Sus trabajos han sido presentados en las conferencias de finanzas más importantes, incluyendo AFA, WFA y EFA. Antes de su regreso a Buenos Aires, Fabiana fue profesora asociada en Finanzas con tenure en la Universidad de Tilburg. También se desempeñó como economista en el BCRA y en la oficina local del Banco Mundial en Buenos Aires. Fabiana es Lic. en Economía por la UBA y Ph.D. en Economía por la Universidad de Maryland.